Những câu hỏi liên quan
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Đinh Đức Hùng
15 tháng 10 2017 lúc 21:14

Đặt \(b+c=x;a+c=y;a+b=z\)

Áp dụng bđt Bunhiacopxki ta có :

\(\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)\left(\sqrt{x}^2+\sqrt{y}^2+\sqrt{z}^2\right)\ge\left(\frac{a}{\sqrt{x}}.\sqrt{x}+\frac{b}{\sqrt{y}}.\sqrt{y}+\frac{c}{\sqrt{z}}.\sqrt{z}\right)^2\)

\(\Leftrightarrow\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)\left(x+y+z\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}\)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\) (đpcm)

Dấu "=" xay ra \(\Leftrightarrow a=b=c\)

Bình luận (0)
pham trung thanh
15 tháng 10 2017 lúc 21:08

Áp dụng S-vác-sơ, ta có

\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{b+c+a+c+a+b}\)

                                                     \(=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

Bình luận (0)
l҉o҉n҉g҉ d҉z҉
15 tháng 10 2017 lúc 21:10

pham trung thanh giải theo cách lớp 8 đc ko ạ !

Bình luận (0)
kiss_rain_and_you
Xem chi tiết
Phạm Duy Thông
24 tháng 10 2015 lúc 0:43

bạn dùng cauchy hai lần nhé

\(\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}\ge3.\sqrt[3]{\frac{abc}{\left(abc\right)^2}}=3.\frac{1}{\sqrt[3]{abc}}\)

\(vì\sqrt[3]{abc}\le\frac{a+b+c}{3}nên\frac{3}{\sqrt[3]{abc}}\ge\frac{3}{\frac{a+b+c}{3}}=\frac{9}{a+b+c}\)

Bình luận (0)
Nguyễn Minh Tuyền
Xem chi tiết
My Nguyễn
Xem chi tiết
Trà My
25 tháng 10 2016 lúc 22:23

Không làm mất tính tổng quát của bài toán, giả sử \(a\ge b\ge c\)(1)

Có \(\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{a+c}{ac}}+\sqrt{\frac{b+c}{bc}}=\sqrt{\frac{1}{b}+\frac{1}{a}}+\sqrt{\frac{1}{c}+\frac{1}{a}}+\sqrt{\frac{1}{c}+\frac{1}{b}}\)

Từ (1) => \(\hept{\begin{cases}\frac{2}{a}\le\frac{1}{a}+\frac{1}{b}\\\frac{2}{b}\le\frac{1}{b}+\frac{1}{c}\\\frac{2}{c}\le\frac{1}{a}+\frac{1}{c}\end{cases}}\Rightarrow\hept{\begin{cases}\sqrt{\frac{2}{a}}\le\sqrt{\frac{1}{a}+\frac{1}{b}}\\\sqrt{\frac{2}{b}}\le\sqrt{\frac{1}{b}+\frac{1}{c}}\\\sqrt{\frac{2}{c}}\le\sqrt{\frac{1}{a}+\frac{1}{c}}\end{cases}}\)

=>\(\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\le\sqrt{\frac{1}{b}+\frac{1}{a}}+\sqrt{\frac{1}{c}+\frac{1}{a}}+\sqrt{\frac{1}{c}+\frac{1}{b}}\)

=>\(\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\le\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{a+c}{ac}}+\sqrt{\frac{b+c}{bc}}\)

Ta có đpcm

Bình luận (0)
le quang minh
Xem chi tiết
Trần Thanh Phương
1 tháng 4 2020 lúc 8:59

Áp dụng BĐT Cauchy-Schwarz:

\(VT\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

Dấu "=" xảy ra <=> \(a=b=c\)

Bình luận (0)
 Khách vãng lai đã xóa
Trần Thùy Linh
1 tháng 4 2020 lúc 10:35

Cách 2

Áp dụng bđt AM-GM ta có

\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2\left(b+c\right)}{4\left(b+c\right)}}=a\)

Tương tự \(\frac{b^2}{a+c}+\frac{a+c}{4}\ge b\),\(\frac{c^2}{a+b}+\frac{a+b}{4}\ge c\)

Cộng từng vế các bđt trên => đpcm

Dấu "=" xảy ra khi a=b=c

Bình luận (0)
 Khách vãng lai đã xóa
@Nk>↑@
Xem chi tiết
Lê Thị Thục Hiền
16 tháng 1 2020 lúc 12:28

AD svac-sơ có:

\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{b+c+a+c+a+b}=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

Dấu "=" xảy ra <=> \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)

<=> a=b=c

Bình luận (0)
 Khách vãng lai đã xóa
@Nk>↑@
16 tháng 1 2020 lúc 11:33
Bình luận (0)
 Khách vãng lai đã xóa
Dung Đặng Phương
Xem chi tiết
Trần Hữu Ngọc Minh
15 tháng 10 2017 lúc 19:27

bài 2

(bài này là đề thi olympic Toán,Ireland 1997),nhưng cũng dễ thôi

Giả sử ngược lại \(a^2+b^2+c^2< abc\)

khi đó \(abc>a^2+b^2+c^2>a^2\)nên \(a< bc\)

Tương tự \(b< ac,c< ab\)

Từ đó suy ra :\(a+b+c< ab+bc+ac\left(1\right)\)

mặt khác ta lại có:\(a^2+b^2+c^2\ge ab+bc+ac\)nên

\(abc>a^2+b^2+c^2\ge ab+bc+ac\)

\(\Rightarrow abc>ab+ac+bc\left(2\right)\)

Từ (1),(2) ta có\(abc>a+b+c\)(trái với giả thuyết)

Vậy bài toán được chứng minh

Bình luận (0)
Trần Hữu Ngọc Minh
15 tháng 10 2017 lúc 21:54

3)để đơn giản ta đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\).Khi đó \(x,y,z>0\)

và \(xy+yz+xz\ge1\)

ta phải chứng minh  có ít nhất hai trong ba bất đẳng thức sau đúng

\(2x+3y+6z\ge6,2y+3z+6x\ge6,2z+3x+6y\ge6\)

Giả sử khẳng định này sai,tức là có ít nhất hai trong ba bất đẳng thức trên sai.Không mất tính tổng quát,ta giả sử

\(2x+3y+6z< 6\)và \(2y+3z+6x< 6\)

Cộng hai bất đẳng thức này lại,ta được:\(8x+5y+9z< 12\)

Từ giả thiết \(xy+yz+xz\ge1\Rightarrow x\left(y+z\right)\ge1-yz\)

\(\Rightarrow x\ge\frac{1-yz}{y+z}\)Do đó

\(8\frac{1-yz}{y+z}+5y+9z< 12\Leftrightarrow8\left(1-yz\right)+\left(5y+9z\right)\left(y+z\right)< 12\left(y+z\right)\)

\(\Leftrightarrow5y^2+6yz+9z^2-12y-12z+8< 0\)

\(\Leftrightarrow\left(y+3z-2\right)^2+4\left(y-1\right)^2< 0\)(vô lý)

mâu thuẫn này chứng tỏ khẳng định bài toán đúng.Phép chứng minh hoàn tất.

Bình luận (0)
I am➻Minh
Xem chi tiết
Phạm Thành Đông
21 tháng 4 2021 lúc 20:26

Đặt \(A=\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\left(a,b,c>0\right)\).

Ta có:

\(\frac{a^3}{a^2+b^2}=\frac{a\left(a^2+b^2-b^2\right)}{a^2+b^2}=\frac{a\left(a^2+b^2\right)-ab^2}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\).

Vì \(a,b>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(a^2+b^2\ge2ab\).

\(\Rightarrow\frac{1}{a^2+b^2}\le\frac{1}{2ab}\).

\(\Leftrightarrow\frac{ab^2}{a^2+b^2}\le\frac{ab^2}{2ab}=\frac{b}{2}\).

\(\Rightarrow\frac{-ab^2}{a^2+b^2}\ge\frac{-b}{2}\).

\(\Leftrightarrow a-\frac{ab^2}{a^2+b^2}\ge a-\frac{b}{2}\).

\(\Leftrightarrow\frac{a^3}{a^2+b^2}\ge a-\frac{b}{2}\left(1\right)\).

Dấu bằng xảy ra \(\Leftrightarrow a=b>0\).

Chứng minh tương tự, ta được:

\(\frac{b^3}{b^2+c^2}\ge b-\frac{c}{2}\).với \(b,c>0\)\(\left(2\right)\)

Dấu bẳng xảy ra \(\Leftrightarrow b=c>0\).

Chứng minh tương tự, ta được:

\(\frac{c^3}{c^2+a^2}\ge c-\frac{a}{2}\)với \(a,c>0\)\(\left(3\right)\).

Dấu bằng xảy ra \(\Leftrightarrow a=c>0\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\)\(\ge\)\(a+b+c-\frac{a}{2}-\frac{b}{2}-\frac{c}{2}\).

\(\Leftrightarrow A\ge\frac{a+b+c}{2}\).

\(\Leftrightarrow A\ge\frac{6}{2}\)(vì \(a+b+c=6\)).

\(\Leftrightarrow A\ge3\)(điều phải chứng minh).

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\a+b+c=6\end{cases}}\Leftrightarrow a=b=c=2\).

Vậy nếu \(a,b,c\)là các số thực dương thỏa mãn \(a+b+c=6\)thì:

\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge3\).

Bình luận (0)
 Khách vãng lai đã xóa
BÙI VĂN LỰC
Xem chi tiết
Đinh Đức Hùng
23 tháng 5 2018 lúc 8:11

\(\sqrt{\frac{a}{1-a}}=\sqrt{\frac{a}{b+c}}=\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{2a}{a+b+c}\)(BĐT Cosi)

Tương tự \(\sqrt{\frac{b}{1-b}}\ge\frac{2b}{a+b+c}\) và \(\sqrt{\frac{c}{1-c}}\ge\frac{2c}{a+b+c}\)

\(\Rightarrow\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Dấu "=" xảy ra \(\Leftrightarrow a=b+c;b=a+c;c=a+b\Rightarrow a+b+c=0\) (KTM)

Vậy \(\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}>2\)

Bình luận (0)